

Developer Documentation

eDirectory 11.2
Page Editor

DevDocs

1

Introduction

The all-new Widget-based, Front-End Page Editor is the new eDirectory
functionality available within the Site Manager to give greater creative control
of the display layout and design of your eDirectory website, without any
coding knowledge required. Create custom pages and add custom content
for any pre-defined or one you’ve added yourself. You can also edit the
page-specific SEO settings and create vanity URLs within the page editor.

Since the platform is widget-based, with the new Page Editor you’ll be able to
reorder the widgets of any page as you wish. You can add a custom widget to
any page, remove it, and/or edit its content.

(Page Editor Main Menu)

2

What on Earth is a WIDGET?

A widget is a piece of code that allows users to define specific functionalities
for a specific area of a webpage, displayed as a graphical user interface that
allows sections of a site to be controlled independently. Still confused? More
simply, and for eDirectory.com, a widget is nothing more than a horizontal
block of content for a frontend page. Let’s take a look:

-

Leaderboard Banner (728 x 90) as represented within the site manager.

It consists of only one block with a banner of the “Leaderboard” type, it’s the
simplest example of a widget we have, there is no customizable content
whatsoever.

(view of Leaderboard Banner on the Front-End)

(Newsletter SignUp Widget as represented within the Site Manager)

The Newsletter widget already has content of its own, which can be easily

3

edited within site manager, like its title, description and background image.

Notice that there’s an icon for edition on the right section, unlike the last
example:

Look on the frontend.

There are other more complex widgets, like the “Header” widget, for example.
Inside it, the site manager can edit all of the labels of the login navbar, as well
as the items of the site navigation, its labels and links. The logo can also be
edited.

* Important: When the site manager edits the content of a widget like the
“Header” or “Footer”, he is editing that widget for ALL of the other pages as
well. Unlike the other widgets that have different content for each different
page. These are known as “Master Widgets”.

**Important: The widgets that have only text fields editable display a
checkbox in case the site manager wants to replicate all of the changes to the
other pages as well. The widget “Download our apps bar” also follows the
same rule. So you have the option to make this change extend to all other
areas displaying the same widget.

Each widget has its own twig file, which contains its own html code, and those
files are located on the widgets folder of each theme, for example, on the
Restaurant theme: '/Resources/themes/restaurant/widgets'.

Every widget’s position can be changed on the site manager, you just need to
drag it to the desired position and save the changes. For example, we can
move the “Header” widget below the “Footer” widget if desired.

The site manager can add or remove any widget from the pages. There are
some exceptions when it comes to adding, because some widgets are only
available for specific pages. For example: the “Result content with left filters”
widget is only available on the Results page. The complete list of exceptions
can be found on 'LoadWidgetPageTypeData.php'.

4

Some widget groups are limited to only one widget per group for that page.
This limitation is due to the fact that some conflicts of javascript features
could happen, or simply for not making sense adding more than one specific
widget on the same page. For example the “Listing Detail”.

The complete list of widget groups that are unable to be duplicated are found
on the private var $widgetNonDuplicate on the Wysiwyg Service
(Wysiwyg.php)

We’re very excited to see what our community builds with this new Page
Editor

5

The magic behind the Page Editor

Now let’s talk about good stuff, the Page Editor Workflow:

- Frontend Workflow

With the new Page Editor, the front-end workflow has undergone some

changes.

Now when the user makes a request to the system, it falls into the “Action of
the Controller” responsible for the requested route and in it we inform the
Wysiwyg Service which module that action belongs to (since some widgets
need to know which module they belong to in order to correctly display their
content). In addition to all banner-type widgets or those that contain a banner,
there are more widgets that depend on the module, here are some
examples:

- Browse by category block with images
- Reviews block
- All Locations

Basically widgets that have content that can vary depending on the module,

6

such as categories, locations, reviews.
When it comes to a page that does not belong to any module, Wysiwyg
Service defaults to the listing module.
At the end of all Action we returned the Twig from that page and passed it to
the page information (id, title, SEO). With the Page Editor changes, the Twig
returned will be the base.html.twig in most cases

* Important: Only the Results Actions and Module Detail Actions remain using
their respective twig and do not use base.html.twig like the others.

On base.html.twig the renderPage method of the WysiwygExtension class
is called, passing the ID of the page. The renderPage method in turn retrieves
from the database all the widgets that belong to that sorted page, as well as
the content that the site manager has configured for that widget.

The renderPage follows the order field of each widget configured by the site
manager and assembles the final page by adding the twig files of the path
contained in the twig_file field of each widget and its content (content field).

* Important: The content that is passed to the twig file is that of the
PageWidget entity. The content of the Widget entity will always be the
default for that widget, and never the widget configured by the site manager.

** Important: The old variables that were sent by the Controller to the twig of
each Action are now global variables of the twigs, because as now to render
we go through several twigs we need them as global references. Be careful
not to use variables with the same name. Example of how to add a global
variable:

Only when renderPage has finished assembling all the widgets does it return
the page to the user, marking the end of the cycle.

7

- The Database

An important part of all functionality is understanding your database, and with
the new Page Editor this is just as important.

The first important point regarding the Page Editor database is to understand
that there are two main entities, the Widget entity and Page. The whole idea
of functionality revolves around these two entities.

The Page table replaced the old Content table, and had its fields related to

8

title and SEO incorporated by Page. The type column has become a new
table, the PageType, which records all page types. These types are listed at
the beginning of the Wysiwyg Service as constants.

For the content field of the Content table a 'Custom Content' widget has
been created where the site manager can add the html content you want. So
now the site manager can add html code anywhere on the page through the
'Custom Content' widget.

The Widget table concentrates the main information related to the widgets,
among them: the twig file (twig_file field) that will be rendered when the
widget is included in a page, what content is editable by the site manager,
what is the modal id (Modal) that allows the edition of the widget for the site
manager and which type (type) of the widget that defines in which group it
will be embedded in the modal of adding widgets.

In the Widget_Theme table, which widget is available for which theme,
because not all widgets are available for all themes.

The Widget_PageType table records the widgets that are unique to certain
pages. That is, if a widget is unique, there will be a record in this table
between the widget and the page type. Otherwise there will be only one
record of the widget without page (null).

The Theme table contains the existing eDirectory themes.

Finally, the Page_Widget table makes the relationship between the pages
and the widgets, that is, each row in this table contains a record saying that a
page (page_id) has a widget (widget_id) in a given order, and also the
content (Content) configured by the site manager, for the theme (theme_id)
indicated.

It is in this table that you can find out which widgets make up the Home Page
in the Default theme, what is the order of them, and what is the content of
each widget.

* Important: Widget images are not saved in the content column. They follow
the structure of the previous version. As for example the "slider" that had a
specific table for this.

9

- Load Data

In version 11.2 of eDirectory a new important bundle for the Page Editor
named DataFixtures has been added, which is responsible for loading all
database records related to the Page Editor.

Since almost all information
about the Page Editor would be
stored in the database, we
added this bundle to leave the
default content of the eDirectory
pages registered.

The bundle transforms the objects that you create into it and inserts in the
database. You define an order of insertion of classes to obey the
dependencies of the bank for relationships..

10

To create relationships through LoadData you need to create a reference to
the object you want to relate to another, so that the next class following the
defined order knows how to find the object to create a relationship.

The complete bundle documentation can be found here on GITHUB.

- Site manager

The Page Editor is available on the site manager in the Design &
Customization session. In this session the site manager can manage the
eDirectory pages and their widgets.

Some important points about the Page Editor area:
- The javascript functionality of the Page Editor interface is concentrated in
the files 'web/scripts/widgets.js' and 'sitemgr/assets/custom-js/widget.php'.

- Every editable widget calls a modal whose ID corresponds to the value of
the modal field. Widgets that only have text fields to be edited use the same
modal 'edit-generic-modal' ID. And those that do not have editable content
have the empty modal field.

- Every widget has a representation image of it for each theme. Pictures can
be found at: 'web/sitemgr/assets/img/widget-placeholder'. It is important to
note that the name of each image refers to the title of the widget passing
through the function 'system_generateFriendlyURL', If there is no image for
that widget the system uses the image of the "Custom Content" widget.

Another interesting point is the functionality of redefining a page, which allows
the site manager to restore the widgets of a page to its default format. For
this, it was added to the Wysiwyg Service (Wysiwyg.php) the default
configuration of eDirectory pages. For each page there is a function that
returns the default widgets of that page for each theme.

11

https://github.com/doctrine/data-fixtures

This is an excerpt from the function that returns the default widgets on the
"Listing Home" page.
The full function of each page can be found in the Wysiwyg Service
(Wysiwyg.php).

* Important: Some pages have widgets with content that is different from that
widget's default. The complete list can be found in the
'getDefaultSpecificWidgetContents' at Wysiwyg Service (Wysiwyg.php).

12

Customizing the Page Editor

In order to customize the Page Editor, we must take into account the fact that
most of the information is stored in the database, so it is possible to create
widgets only by inserting your information in the database and adding your
twig, for example. But this is not the best way or the focus of this guide.

The main customizations involving Page Editor would be the creation of new
widgets, pages or themes. The best way to do this is through LoadData, so
everything gets registered in the code and not just in the database.

So for any of the following customizations, add a widget, page or theme, you
need to copy the files from the LoadData Common folder into the Custom
folder.

13

* Important: Do not forget to fix the namespace of the copied files

- Adding a Widget

For this guide we will use for example the creation of the. 'Popular Listings'
widget.

To get started you need to create your twig file 'popular-listings.html.twig'
in the "listing" subfolder contained in the "widgets" folder of each theme, for
example for the default theme would be in
'/Resources/themes/default/widgets/listing', unless the new widget has theme
exclusivity, then only needed for the themes in which it appears.

Next we need to put the widget information in the LoadData bundle.

In the newly copied file 'LoadWidgetData.php', at the end of the array
$standardWidgets there is a sample comment on how to add a widget.
If in doubt, you should create a new node in the array with the information of
the new widget and its default content. Example:

With this, we define the title, the twig file, the type to know in which tab it will
be made available, the content with a single label, and how it's editable
element will be label (s), the generic modal of the new widget 'Popular
Listings'.

* Important note: If the widget is more complex and the site manager can edit
more things besides just label (s) you need to create a specific modal for this
new widget in the widget modals folder in the site manager area:
'/web/includes/modals/widget'.

At the new file, 'LoadWidgetPageTypeData.php' we’ll add if necessary, a
node at the end of the array $exceptionsWidgets with the pages that this new
widget can be added. If the new widget is available for all pages skip this

14

step.

In our example, we defined that the new widget, 'Popular Listings'. It will be
exclusive of "Home Page" and "Listing Home".

Now to set in which themes the new widget will be available, you must add a
new node with the title of the new widget in the return array in the functions
that define which widgets of each theme in the widget Wysiwyg Service
(Wysiwyg.php).
Each theme has its function listing your widgets, and there is also one for the
widgets common to all themes.

In this case we leave our new widget 'Popular Listings' available only at the
default theme. If it needs to be common to all the themes it just needs to be
added on the function 'getCommonThemeWidgets' and return.

Okay, now you only have to execute the command in the terminal for
LoadData to insert the new data, do not forget to put the correct domain.

php app/console doctrine:fixtures:load
--fixtures=src/ArcaSolutions/WysiwygBundle/DataFixtures/ORM/Custom
--append --domain=your.domain.com

The following messages should be returned if all steps have been done
correctly:

15

DONE! The widget 'Popular Listings' has been added.

- Adding a new Page

As an example, we’ll use the creation of the page "Categories Home",
Considering that a route has already been added, a Controller and an Action
has been created, and everything else it took to add a new page to the
eDirectory front.

Adding a new page is very similar to adding a widget. Just like adding a new
widget, you need to copy the files from the Common folder of LoadData to
the Custom folder.

* Important: Do not forget to fix the namespace of the copied files.

Before adding something to LoadData we need to create a constant for the
type of this new page. Every page has its type listed as constant in the
Wysiwyg Service (Wysiwyg.php). Add the new type at the end of the list:

At the newly copied file 'LoadPageTypeData.php' add a new page type to a
new node at the end of the array '$standardPageTypes'.

At the newly copied file 'LoadPageData.php' add the new page information to

16

a new node at the end of the array '$standardPages'.

The next step is to create the function that defines the default page widgets
for each theme. At the Wysiwyg Service (Wysiwyg.php) create a function by
using the constant with the new page type that was added as part of the
function name, because the page reset functionality picks up the function
according to the page type.

*

Important: The name of this function should always obey as follows:
'get' + 'value of the page type constant with no spaces' + 'DefaultWidgets'.

17

** Important: Do not forget to create the array with the page widgets for each
theme, and each theme has its Header and Footer widget.

Once you have created the function that defines the default of the widgets of
the page you need to list it there for the function 'getAllPageDefaultWidgets'
used on LoadData.

If one of the widgets in this new page has different content only for this page,
you must define its different content in the function
'getDefaultSpecificWidgetContents'.

Okay, now you only have to execute the command in the terminal for
LoadData to insert the new data, do not forget to put the correct domain.

php app/console doctrine:fixtures:load
--fixtures=src/ArcaSolutions/WysiwygBundle/DataFixtures/ORM/Custom
--append --domain=your.domain.com

The following messages should be returned if all steps have been done
correctly:

Done, the new page, 'Categories Home' , was added. Finally, when editing
the new page inside the Page Editor, click reset the page for the default
widgets to be added.

18

- Add a new Theme

For this guide we will use for example the creation of the new theme,
'School', considering that all the previous process of creation of a new theme
was followed in accordance with this tutorial.

The first step is to create a constant with the title of the new theme in the
entity
Theme(Theme.php).

At the newly copied 'LoadThemeData.php' add a new node at the array
'$standardThemes' with the title constant of the new theme.

Unlike the other tabs, to add a new Theme you also need to create a new
folder in LoadData for the new theme. The folder must be created inside the
'ORM' with the name of 'Theme' plus the title of the new theme, in our
example it will be 'ThemeSchool'.

19

http://arcasolutions.github.io/creating-new-theme/

Inside the new folder you need to create a copy of the file
'LoadPageWidgetData.php' of the folder ThemeDefault. And in it change all
the flames of the tem constant Default, to the new theme. Example:

Now there is a hard part to do in Wysiwyg Service (Wysiwyg.php).

The first part is simple, you need to create a function that returns an array
with all the widgets that will be available in this new theme. For example let's
say that our new theme 'School' is a copy of Default, therefore, it will have
all the widgets of this theme in common. The function would look like this.:

The important thing is to return all widgets common to all themes plus the
unique ones of this new theme. The function name consists of 'get' + 'value
of the constant of the new theme' + 'ThemeWidgets'. Like in our example:
'getSchoolThemeWidgets'.

The second part is more laborious, you need to create a new node in the
array of each function that lists the default widgets of each page of the
system. This node should list the default page widgets for that new theme. In
the example below we make this addition in the "Custom Page" function.

20

Okay, now you only have to execute the command in the terminal for
LoadData to insert the new data, do not forget to put the correct domain.

Note that there is an additional parameter where the folder path created
for this theme is located, in our example the theme 'School' :

php app/console doctrine:fixtures:load
--fixtures=src/ArcaSolutions/WysiwygBundle/DataFixtures/ORM/Custom
--fixtures=src/ArcaSolutions/WysiwygBundle/DataFixtures/ORM/ThemeSchoo
l --append --domain=your.domain.com

The following messages should be returned if all steps have been done
correctly:

And...done! 'School' theme was added!

21

